Choosing among generalized linear models applied to medical data.
نویسندگان
چکیده
When testing for a treatment effect or a difference among groups, the distributional assumptions made about the response variable can have a critical impact on the conclusions drawn. For example, controversy has arisen over transformations of the response (Keene). An alternative approach is to use some member of the family of generalized linear models. However, this raises the issue of selecting the appropriate member, a problem of testing non-nested hypotheses. Standard model selection criteria, such as the Akaike information criterion (AIC), can be used to resolve problems. These procedures for comparing generalized linear models are applied to checking for difference in T4 cell counts between two disease groups. We conclude that appropriate model selection criteria should be specified in the protocol for any study, including clinical trials, in order that optimal inferences can be drawn about treatment differences.
منابع مشابه
Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملMinimizing the Weights dispersion in Cross-Efficiency Measurement in data envelopment analysis
Because of the piecewise linear nature of the data envelopment analysis (DEA) frontier, the optimal multipliers of the DEA models may not be unique. Choosing weights from alternative optimal solutions of dual multiplier models is one of the most frequently studied subjects in the context of DEA. In this paper, the authors have been inspired by the idea of Cooper et al. (2011) to propose a li...
متن کاملGeneralized Linear Models: An Applied Approach
Introducing a new hobby for other people may inspire them to join with you. Reading, as one of mutual hobby, is considered as the very easy hobby to do. But, many people are not interested in this hobby. Why? Boring is the reason of why. However, this feel actually can deal with the book and time of you reading. Yeah, one that we will refer to break the boredom in reading is choosing generalize...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 17 1 شماره
صفحات -
تاریخ انتشار 1998